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Abstract

Aims: The aim of this study was to determine if endophytes from wild and

ancient Zea plants (corn family) have anti-fungal activities, specifically against

the most important fungal pathogen (Sclerotinia homoeocarpa) of creeping

bentgrass, a relative of Zea, used here as a model grass.

Methods and Results: A library of 190 bacterial endophytes from wild, ancient

and modern Zea plants were tested for their ability to suppress S. homoeocarpa

in vitro, followed by in planta testing of candidates using greenhouse trials.

Three endophytes could suppress S. homoeocarpa, originating from wild maize

and an ancient Mexican landrace, consistent with our hypothesis. 16S

phylogenetic analysis and BOX-PCR DNA fingerprinting suggest that the anti-

fungal endophytes are distinct strains of Burkholderia gladioli. One strain

(3A12) was confirmed to colonize creeping bentgrass using green fluorescent

protein (GFP) tagging. Evans blue vitality staining demonstrated that the

bacterial endophytes exhibited fungicidal activities against the pathogen. The

endophytes inhibited a wide spectrum of plant-associated fungi including

diverse crop pathogens.

Conclusions: The results support the hypothesis that wild and ancient Zea

genotypes host bacterial endophytes that can control fungal pathogen(s).

Significance and Impact of the Study: These results suggest that wild and

ancient crops may be an unexplored reservoir of anti-fungal bacterial endophytes.

Introduction

Microbes that inhabit host plant living tissue without

showing disease symptoms are referred to as endophytes

(Hallmann et al. 1997; Strobel 2003). Some endophytes

seem to establish this nonharmful relationship with plants

to gain access to their protected habitats (Saikkonen et al.

2004). In return, endophytes help their host plants to

acquire nutrients or fight bacterial and fungal pathogens

(Rosenblueth and Mart�ınez-Romero 2006; Ryan et al.

2008; Johnston-Monje and Raizada 2011).

Wild plants grow and resist pathogens without the use

of fungicides, which has primarily been attributed to plant

genome-mediated immunity (Rosenthal and Dirzo 1997;

D�avila-Flores et al. 2013; de Lange et al. 2014). In barley,

however, endophytes isolated from the roots of a wild

relative were shown to have potent anti-pathogen activities

(Murphy et al. 2015). Our group has previously cultured

~200 bacterial endophytes from the agriculturally impor-

tant genus Zea which includes maize (corn). These endo-

phytes were isolated from modern maize (Zea mays ssp.

mays) as well as its wild and ancient relatives (Johnston-

Monje and Raizada 2011; Johnston-Monje et al. 2014).

These relatives included the primary ancestor of modern

maize, known as Parviglumis (Zea mays ssp. parviglumis)

which is an annual teosinte grass that continues to grow

today in southwestern Mexico (Piperno et al. 2009), as

well as Zea diploperennis, a unique perennial teosinte grass

from Mexico (Iltis and Doebley 1980). Following its

domestication ~9000 years ago, maize was migrated by

indigenous farmers throughout the Americas and bred into

diverse landraces (Matsuoka et al. 2002), including the
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ancient Mexican landrace Chapalote (Zea mays ssp. mays

landrace Chapalote). In the 20th century, the landraces

were further bred by professional breeders into modern

inbreds and hybrids. We hypothesized that the wild and

ancient relatives of modern maize may host endophytes

that assist plants to control fungal pathogens.

Creeping bentgrass (Agrostis stolonifera) is a relative of

Zea within the grass family (Poacea) (Rotter et al. 2007).

Similar to maize, it is a domesticated plant (Rotter et al.

2007) and is the most widely used turfgrass species on golf

greens (Casler 2006). The most economically important dis-

ease that affects creeping bentgrass is dollar spot disease,

caused by the fungus Sclerotinia homoeocarpa (soon to be

reclassified to the Rutstroemiaceae family) (Beirn et al. 2013;

Rioux et al. 2014). Sclerotinia homoeocarpa enters the plant

through wounds, natural openings on the leaves (stomata)

or by appressorium formation (Orshinsky et al. 2012). The

disease appears as straw coloured lesions with reddish

brown borders (Walsh et al. 1999). Clusters of lesions may

reach the $1 US dollar coin, hence the name dollar spot.

There are increasing demands to find bio-based methods to

control dollar spot disease, to overcome the problems asso-

ciated with the use of synthetic fungicides (Compant et al.

2005), and other cost/labour intensive cultural control

methods (Ellram et al. 2007; Giordano et al. 2012). Sclero-

tinia homoeocarpa is widespread among the grass relatives of

Zea plants, affecting at least 11 genera (Walsh et al. 1999).

The objective of this study was to test the hypothesis

that wild and ancient Zea plants host endophytes that

control the fungal pathogens of modern crops, using

creeping bentgrass as a model grass system. Here, we

screened 190 bacterial endophytes derived from seeds,

roots and shoots of Zea for their ability to suppress

S. homoeocarpa. The results show that the wild and

ancient relatives of modern maize possess endophytes

that can control this pathogen.

Materials and methods

Source of endophytes

The bacterial endophytes used in this study were isolated

from seeds, roots and shoots of 14 different genotypes

belonging to Zea (Fig. 1 and Table S1), as previously

reported (Johnston-Monje and Raizada 2011; Johnston-

Monje et al. 2014).

In vitro screen for endophytes with activity against

Sclerotinia homoeocarpa

Sclerotinia homoeocarpa was cultured in YPD media at

25°C at 80 rev min�1 for 3 days. Presterilized potato

dextrose agar (PDA) was melted, cooled to 50°C, inocu-
lated with an S. homoeocarpa culture at a ratio of 1 : 25

(fungal culture: media, v/v), and then the inoculated

PDA was poured into Petri dishes (150 mm 9 15 mm)

and permitted to solidify. Wells were created in the agar

using sterilized Pasteur pipettes. Maize endophytes were

cultured using LB media and permitted to grow over-

night at 37°C with shaking at 250 rev min�1. The endo-

phyte cultures were adjusted to OD595 of 0�4–0�6. Thirty
microliters from each endophyte culture were added to

triplicate agar plates containing S. homoeocarpa. The

plates were subsequently incubated at 25°C for 3–5 days,

Indigenous Landraces
Gaspe Yellow Flint 
Cristalino de Chihuahua 
Chapalote
Mixteco
Bolita

Wild Teosintes
Zea mays ssp. parviglumis
Zea mays ssp. mexicana
Zea nicaraguensis
Zea diploperennis

Jala
Nal-Tel 
Tuxpeno

Pioneer 3751
B73

Indigenous 
Landraces

Modern varieties

Figure 1 A map showing the different Zea genotypes previously used to collect the endophytes used (Johnston-Monje and Raizada 2011;

Johnston-Monje et al. 2014).
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and zones of inhibition of S. homoeocarpa hyphal growth

were measured. Endophytes associated with a fungal zone

of inhibition were selected for further experiments. Nys-

tatin fungicide (N581; PhytoTechnology Laboratories,

Overland Park, KS) was used as a positive control at a

concentration of 303 units well�1 (0�05 mg well�1).

Taxonomic identification of candidate endophytes

Endophytic strain 3A12 was previously identified using

its full genome sequence (Ettinger et al. 2015). For all

other endophytes, the full length 16S rRNA sequence was

used for taxonomic identification. DNA was extracted

using a Bacterial Genomic Miniprep Kit (NA2110; Sigma,

St. Louis, MO). A NanoDrop ND-1000 machine (Thermo

Scientific, Waltham, MA) was used to quantify DNA,

then per endophyte, 100 ng of DNA was used as template

in a PCR reaction with universal 16S rDNA primers

(Frank et al. 2008; Ghyselinck et al. 2013) in a total vol-

ume of 40 ll. The reaction mixture contained: 20 ll of
GoTaq� Green Master Mix (M712C; Promega, Madison,

WI), 1 ll of 10 lmol l�1 27f primer with sequence

AGAGTTTGATCMTGGCTCAG, 1 ll of 10 lmol l�1

1492r primer with sequence GGTTACCTTGTTAC-

GACTT, and double distilled water up to 40 ll. For

degenerate primers, M = A, C. The following amplifica-

tion conditions were used: 94°C for 5 min, 35 amplifica-

tion cycles (94°C for 45 s, 50°C for 1 min, 72°C for

2 min), and a final extension at 72°C for 7 min. PCR

amplicons were gel purified (Illustra GFX; GE Healthcare,

Little Chalfont, UK), submitted for sequencing using

both forward and reverse primers (Laboratory Services,

University of Guelph) and identified using BLAST searches.

To confirm bacterial identity at the species level, refer-

ence 16S sequences were obtained from GenBank. These

sequences were then used to construct phylogenetic trees

using Phylogeny.lirmm.fr using default parameters (Cas-

tresana 2000; Edgar 2004; Dereeper et al. 2008).

Genomic fingerprinting of candidate endophytes

The BOX-PCR reaction consisted of 20 ll of GoTaq�

Green Master Mix (M712C; Promega, Madison, WI),

50 ng of DNA, 2 lmol l�1 BOX-A1R primer with

sequence CTACGGCAAGGCGACGCTGACG and double

distilled water up to 40 ll. The amplification conditions

were: 95°C for 7 min, 30 amplification cycles (95°C for

1 min, 53°C for 1 min, 65°C for 8 min), and a final

extension at 65°C for 15 min (Cottyn et al. 2001). From

each PCR product, 20 ll were loaded onto 1% agarose

gel in TAE and run at 75 V for 11 h beside O’GeneRuler

DNA Ladder Mix (SM1173, Thermo Fisher Scientific,

Waltham, MA).

Confirming the endophytic ability of strain 3A12

Please see supplemental methods (Appendix S1).

Greenhouse testing of antifungal endophyte candidates

using creeping bentgrass

Experimental design

Field cores (cup cuts, 12 cm diameter, 9 cm deep) were

harvested using a golf cup cutter from a creeping bent-

grass putting field (cultivar Mackenzie, grown on 80:20

sand:peat, according to USGA specification) taken from

the Guelph Turfgrass Institute (Guelph, ON Canada) and

placed into pots (12 cm diameter). Pots were incubated

in a greenhouse at 23°C day/18°C night, 16-h daylight,

supplemented when natural light fell below

500 lmol m�2 s�1 photosynthetic photon flux density

(PPFD) (at pot level) with a mixture of 400–600 W high

pressure sodium lights to provide an additional 70–
80 lmol m�2 s�1 PPFD (at pot level). Light was mea-

sured using a quantum meter (model QMSS; Apogee

Instruments Inc, Logan, UT). Treatments included: buffer

only control; individual endophyte treatments (3A12,

3C11, 4H12, 5C9) as well as 3A1 (as a negative control);

pyramided endophyte treatment (mixture of equal vol-

umes of 3A12, 3C11 and 5C9); and a fungicide (positive

control, see below). For each endophyte treatment, there

were four replicate field cores inoculated with S. homoeo-

carpa and four controls that were not inoculated with

S. homoeocarpa. Controls that were treated with an endo-

phyte but not inoculated with the fungal pathogen were

used to measure for any pathogenicity caused by the

endophytes. The fungicide treatment consisted of the

maximum label application rate for Banner MAXX

(51 ml 100 m�2, Propiconazole 14�3%, 60207-90-1; Syn-

genta Crop Protection, Guelph, Ontario, Canada). Pots

were randomized, and the entire greenhouse trial was

independently replicated.

Endophyte inoculant preparations

To prepare the endophyte inoculants, each bacterium

was cultured for ~20 h in 200 ml of LB in 500 ml flasks with

shaking at 250 rev min�1 at 30°C. Cells were collected by

centrifugation, washed in 10 mmol l�1 Tris HCl pH 7, resus-

pended in 10 mmol l�1 Tris HCl pH 7 to OD595 = 0�5.

Pathogen inoculum preparation

The pathogen inoculums were prepared by autoclaving

200 g of Kentucky bluegrass seeds, adding 100 ml of ster-

ile water, which were then mixed, allowed to stand over-

night, and mixed with ½ plate of S. homoeocarpa grown

on PDA plates (100 mm 9 15 mm, cut into small

pieces). The inoculated seed carriers were then covered
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and incubated for 2–3 weeks, spread out on newspaper

to air dry, passed through a 2 mm sieve to break clumps,

placed into plastic bags and refrigerated.

Endophyte and pathogen applications

After field cores had been transplanted into the green-

house, each pot received 5 ml of endophyte suspension

in the form of a canopy spray. Control pots were sprayed

with 5 ml of buffer (10 mmol l�1 Tris HCl, pH 7). One

week later, the grass was clipped to ~3 cm and re-sprayed

with endophytic bacteria. Pots were irrigated daily with a

top spray of water and fertilizers (20-8-20). One week

later, 0�2 g of S. homoeocarpa (coated onto Kentucky

bluegrass seed as carrier) was sprinkled into each pot.

Following inoculation of the fungal pathogen, turf pots

were then covered with plastic bags to help maintain high

humidity to favour disease development. No irrigation or

clipping was performed after pathogen inoculation. Pots

were observed daily for disease symptoms.

Disease scoring and statistical analysis

Disease scoring was performed quantitatively using ASSESS

software (43696M5; American Phytopathological Society,

Saint Paul, MN) from picture scans. The software colour

threshold was set to 105 for the upper threshold and 31

for the lower threshold to differentiate healthy areas from

diseased areas. For statistical analysis, one-way ANOVA was

used (PRISM; Graphpad Software, La Jolla, CA).

Characterization of in vitro interactions between

pathogen and endophytes

The in vitro interactions between endophytes and

S. homoeocarpa were visualized on microscope slides.

Sclerotinia homoeocarpa was cultured in YPD media for

2–3 days at 25°C at 80 rev min�1. The endophytes

were cultured in liquid LB overnight at 37°C with

shaking at 250 rev min�1. One ml of PDA was spread

on sterilized glass slides placed in Petri dishes and

allowed to solidify. A fragment of S. homoeocarpa was

applied to the centre of each slide, and then 20 ll of

each endophyte culture was applied to one side of

S. homoeocarpa, and on the other side 20 ll of LB

media was applied. Slides were incubated at 25°C over-

night. Controls consisting of 1% Banner MAXX

(60207-90-1; Syngenta Crop Protection, Guelph,

Ontario, Canada) in water and 1% Nystatin (N581,

PhytoTechnology Laboratories, Overland Park, KS) in

DMSO were included. Slides were stained using Evans

blue (#206334; Sigma, St. Louis, MO), then examined

using light microscopy (B1372, Axiophot; Zeiss, Ober-

kochen, Germany) and NORTHERN ECLIPSE software.

Anti-fungal target spectrum of strain 3A12, 3C11 and

5C9

Using the dual culture method, the anti-fungal target

spectra of endophytes 3A12, 3C11 and 5C9 were tested

against a library of diverse plant-associated fungi includ-

ing crop pathogens obtained from the Agriculture and

Agrifood Fungal Type Collection (AAFC, Guelph,

Canada). The library was comprised of 14 species; the

species name along with the major crops affected (in

brackets) are: Alternaria alternate (strawberry and pear)

(Ito et al. 2004). Aspergillus niger (maize, grapes and

peanut) (Palencia et al. 2010), Davidiella tassiana (pear,

grape, cherry and date palm) (Barbosa et al. 2001),

Diplodia pinea (pine) (Waterman 1943), Fusarium ave-

naceum (maize, wheat) (Shaner 2003; Kang et al. 2005),

Fusarium lateritium (sweet potato, groundnut and olive)

(Vitale et al. 2011), Fusarium sporotrichioides (maize)

(Logrieco et al. 2002), Gibberella avenacea (maize) (Sha-

ner 2003), Nigrospora oryzae (rice) (Sempere and Santa-

marina, 2008), Nigrospora sphaerica (blueberry and date

palm) (Wright et al. 2007; Abass et al. 2013), Paraconio-

thyrium brasiliense (peach, nectarine and plum) (Damm

et al. 2008), Penicillium commune (pear and apple)

(Sanderson and Spotts 1995), Penicillium expansum (ap-

ple) (Lai et al. 2014) and Trichoderma longibrachiatum

(biocontrol agent and opportunistic human pathogen)

(Kuhls et al. 1999). The different fungal strains were

cultured in YPD media for 3 days at 25°C at

80 rev min�1. Previously sterilized PDA was melted,

allowed to cool to 50°C, mixed with each fungal cul-

ture, poured into plates and allowed to completely

solidify. Holes were created into the agar using a sterile

Wessermann tube, and the resulting agar plugs were

removed using a sterilized wire loop. The day before,

strains 3A12, 3C11 and 5C9 were cultured in LB media

and allowed to grow overnight at 37°C with shaking at

250 rev min�1. Thirty microlitres of each culture

(OD595 = 0�8) were applied in each hole for each fun-

gus, on triplicate agar plates. Plates were incubated at

25°C for 3–5 days, and inhibition zones of fungal

growth were measured and recorded.

Results

In vitro screen for endophyte activity against Sclerotinia

homoeocarpa

Using dual culture assays (Fig. 2a), 190 endophytes were

screened for in vitro antifungal activity against S. homoeo-

carpa. Five endophytes showed zones of inhibition of

fungal growth (Fig. 2b–c, Table S1).
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Taxonomic identification of candidate endophytes

One endophytic candidate (3A12) was classified after

whole genome sequencing as most closely matching

Burkholderia gladioli (Ettinger et al. 2015). The other four

candidate endophytes were identified based on 16S rRNA

sequencing combined with phylogenetic tree analysis.

Two endophytes (3C11 and 5C9) most closely resembled

B. gladioli (100%) (Accession numbers KP455296 and

KP455294) (Fig. 2d); the three predicted Burkholderia

endophytes (3A12, 3C11 and 5C9) showed 100% DNA

sequence identity to one another in their 16S rRNA

genes. Genomic fingerprinting using BOX-PCR showed

that the B. gladioli isolates represent three distinct strains

(Fig. 2g–h). Strain 3H8 most closely resembled Bacillus

subtilis (100%) (accession number KP455298) and 4H12

resembled Paenibacillus polymyxa (99%) (accession num-

ber KP455297) (Fig. 2e–f). Respectively, 3A12, 3C11 and

3H8 originated from seeds of: an ancient Mexican maize

landrace (Zea mays ssp mays landrace Chapalote); a wild

Central American perennial maize (Zea diploperennis);

and a modern commercial hybrid (Zea mays ssp mays,

Pioneer 3751). Strain 4H12 originated from roots of the

Pioneer 3751 hybrid, while 5C9 originated from roots of

the extant wild ancestor of modern maize (Zea mays ssp

parviglumis) (Fig. 2c, Table S1).

Confirming the endophytic ability of strain 3A12

Confocal microscopic examination of creeping bentgrass

plants that had been seed coated with GFP tagged strain

3A12 showed that the microbe can colonize shoots of

creeping bentgrass, suggesting that it behaves as an endo-

phyte in creeping bentgrass (Fig. 2i–j).

Greenhouse testing of antifungal endophyte candidates

The candidate antifungal endophytes were tested for their

ability to suppress dollar spot disease in replicated green-

house trials. To determine the reliability of ASSESS software

for disease scoring, positive and negative controls were

first evaluated (Fig. S1).

After validating the disease scoring methodology, the

endophytes were applied as sprays on creeping bentgrass

field cores prior to inoculation with S. homoeocarpa

(Fig. 3; Figs S2–S5). One endophyte (3H8) was excluded

from greenhouse testing, as it failed to suppress the dis-

ease in a pretrial involving test tubes (data not shown).

Endophytes 3A12, 3C11, 5C9 as well as a mixture of all

three endophytes were found to reduce mean dollar spot

disease symptoms in two independent trials (Fig. 3a–f, j–
o, s, t; Figs S2 and S4, Table S2). The endophyte mixture

did not show better antifungal activity when compared to

individual endophytes. Endophyte 4H12 did not show

disease suppression in either trial (Fig. 3g,p,s,t; Figs S2

and S4). Endophyte 3A1 (used here as a negative control)

did not reduce disease symptoms (Fig. 3h,q,s,t; Figs S2

and S4) while the fungicide Banner MAXX was able to

reduce disease symptoms (Fig. 3i,r,s,t; Figs S2 and S4).

Endophytes 3A12, 3C11, 5C9 and the endophyte mixture

did not cause pathogenicity on creeping bentgrass (Figs

S3, S5 and S6 and Table S2).

Characterization of in vitro interactions between the

pathogen and endophytes

To help understand the anti-fungal mode of action of the

candidate endophytes, they were grown side by side with

S. homoeocarpa on microscope slides then stained with

Evans blue, which stains mycelia blue when dead (Fig. 4a).

None of the fungal mycelia stained blue on the side

exposed only to LB media (control) (Fig. 4b,d,h,j,l,n) but

they stained blue when in contact with endophytes 3A12,

3C11, 4H12 and 5C9 indicating mycelial death (Fig. 4c,e,

i,k); endophyte 3H8 was the exception (Fig. 4f,g).

The fungal mycelia also stained blue when in contact

with the fungicides, Banner MAXX (Fig. 4m) or Nystatin

(Fig. 4o). We conclude that endophytes 3A12, 3C11,

4H12 and 5C9 exhibit fungicidal activity against

S. homoeocarpa in vitro, whereas 3H8 may be fungistatic.

Anti-fungal target spectrum of candidate antifungal

endophytes

We then tested whether the candidate endophyte strains

could inhibit other plant-associated fungi including well

known crop pathogens. Using dual culture assays to test

for the antifungal activity of strain 3A12, 3C11 and 5C9

Figure 2 In vitro testing of maize endophytes for antifungal activity. (a) Example of a Petri dish dual culture screen showing zones of inhibition

of Sclerotinia homoeocarpa by endophytes 3A12 and 3C11. (b) Graph showing the mean zone of inhibition diameter (cm) associated with each

candidate endophyte and controls. Asterisks indicate significant difference from the negative control. (c) Summary of candidate endophytes with

anti-Sclerotinia activity, their predicted taxonomy, and host plant source. (d–f). 16S phylogenetic trees to assist with taxonomic identification of:

(d) endophyte 3A12, 3C11, 5C9, (e) endophyte 3H8, and (f) endophyte 4H12. (g–h) Genome fingerprinting of strains 3A12, 3C11 and 5C9. (g)

fingerprinting pattern after gel electrophoresis where lanes from left to right show DNA ladder, strain 3A12, strain 3C11, strain 5C9 and a nega-

tive control, and (h) the corresponding lane profiles for strains 3A12, 3C11 and 5C9. (i–j) Confirmation of the endophytic ability of strain 3A12

through visualization of GFP tagged strain 3A12 in creeping bentgrass shoots using confocal microscopy. The scale bar is 10 lm.
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against diverse plant fungi revealed that endophytes

3A12, 3C11 and 5C9 were active against 14, 14 and 13

out of 14 tested fungi respectively (Fig. 5). These results

suggest that the bacterial endophytes with potential anti-

fungal activity against S. homoeocarpa have a broad target

spectrum of antifungal activity.

Endophyte

Name
Species Prediction Plant Source

3A12
Burkholderia gladioli 

(100%)

Seeds of the ancient Mexican maize landrace, 

Zea mays ssp  mays landrace Chapalote

3C11
Burkholderia gladioli 

(100%)

Seeds of the wild Central American maize 

species Zea diploperennis

3H8
Bacillus subtilis 

(100%)

Seeds of amodern maize hybrid, Zea maysssp 

mays Pioneer 3751

4H12
Paenibacillus polymyxa

(99%)

Roots of a modern maize hybrid, Zea maysssp 

mays Pioneer 3751

5C9
Burkholderia gladioli 

(100%)

Roots of the extant wild ancestor of modern 

maize, Zea mays  ssp parviglumis (Parviglumis)

(a) (c)

* * * * *

*

(b)

Fungal pathogen

3A123C11

Negative

(d) (e)

(f)

(g)
3A12

3C11

5C9

(h)

(i) (j)
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Discussion

Based on the results obtained from the in vitro screen

and the greenhouse trials, three candidate endophytes

from Zea were discovered that have potential to suppress

the grass pathogen, S. homoeocarpa (endophytes 3C11,

5C9 and 3A12). The full draft genome sequence of one of

the potent anti-fungal microbes, endophyte 3A12, showed

that the closest taxonomic match was to B. gladioli

(Ettinger et al. 2015), while molecular analyses predict

that the other two anti-fungal strains are also B. gladioli.

Genomic DNA fingerprinting demonstrated that the three

B. gladioli isolates are distinct strains. All bacterial endo-

phytes with potential antifungal activity originated from

wild maize (Diploperennis, Parviglumis) or ancient maize

(Chapalote) (Fig. 6), providing support for our hypothe-

sis that wild and ancient relatives of crops may be a

reservoir of bacterial endophytes that can suppress fungal

pathogens.

Ancient selection for endophytes?

Wild Diploperennis plants originate from the Sierra de

Manantlan region, Cuatitlan, Jalisco, Mexico. This area

experiences rainfall (about 1800 mm) for up to

6 months, and the temperature of this region varies

from cool to very warm (Iltis and Doebley 1980). By

contrast, wild Parviglumis plants originate from the

tropical forest in the Central Balsas of southwestern

Mexico (Piperno et al. 2009). Hence, both Parviglumis

and Diploperennis derive from wet conditions, which

are known to favour fungal pathogens. It may be that

these plants selected for endophytes with antifungal

activity. By contrast, the landrace Chapalote originates

from the dry lowlands of Sonora and Sinaloa, Northern

Mexico (Wellhausen 1952; Carpentier 2004). One

possible hypothesis is that the antifungal endophyte(s)

co-evolved with Zea under wet conditions but were

retained in early domesticated maize, including

Chapalote, as it was migrated by indigenous farmers to

the dry lowlands of Mexico.

Diploperennis is a wild perennial plant (Iltis et al.

1979). Parviglumis is a wild annual teosinte that was

domesticated 9000 years ago into modern maize (Mat-

suoka et al. 2002). Chapalote is considered the missing

link between wild and modern maize. It is an ancient

indigenous landrace, that emerged in the archaeological

records >3000 years ago in Mexico (Wellhausen 1952).

Hence, the three predicted anti-fungal B. gladioli endo-

phyte strains from this study were isolated from a range

of host genotypes that span the stages of crop evolution,

from perennialism to annualism in the wild, to domesti-

cation by humans (from wild annual plants to farmer

landraces). The bacilli strains may represent more recent

genetic selection from traditional landraces to modern

cultivars by professional breeders (Rosenthal and Dirzo

1997).

Though B. gladioli is a well-recognized pathogen of

humans and plants (Kanj et al. 1997; Ura et al. 2006;

Nandakumar et al. 2009; Dursun et al. 2012; Zhou et al.

2015), recent evidence suggests that B. gladioli may also

be isolated from healthy plant tissues or soils and have

beneficial activities (Gupta et al. 2012; Ko et al. 2012;

Pereira et al. 2012; Su�arez-Moreno et al. 2012; Rombola

et al. 2014; Jha et al. 2015). A preliminary RAST-server

based search of the draft sequence of strain 3A12 did not

show this strain to possess genes encoding toxins, super-

antigens or virulence/disease factors (Ettinger et al. 2015).

The search did reveal the presence of genes that encode

the plant hormone auxin, suggesting that it may stimu-

late plant growth (e.g. roots).

Anti-fungal mechanisms of action

With respect to the anti-fungal mechanism(s) of action

of the Burkholderia endophytes, the genome sequence of

strain 3A12 predicts that it can produce antifungal com-

pounds including chitinase and phenazine (Ettinger et al.

2015). In a previous report, B. gladioli was found to have

antifungal activity against the pathogens, Botrytis cinerea,

Aspergillus flavus, Aspergillus niger, Penicillium digitatum,

Penicillium expansum, Sclerotinia sclerotiorum and Phy-

tophthora cactorum (Elshafie et al. 2012). The potential

mechanism of action was the production of a volatile

organic compound (cyclic terpene) (Elshafie et al. 2012).

In another study, involving B. gladioli strain CHB101, the

antifungal activity was associated with chitinase produc-

tion (Kong et al. 2001). Other members of the genus

Burkholderia, comprising >40 species (Vial et al. 2007),

are well known to produce antimicrobials including phe-

nazine, chitinase, lipopeptides, quinolinones, altericidins,

pyrrolnitrin, cepacidines, siderophores and volatile com-

pounds (Vial et al. 2007; Schmidt et al. 2009). For exam-

ple, Burkholderia cepacia BC11 was found to control

Rhizoctonia solani in cotton through production of the

lipopeptide AFC-BC11 (Kang et al. 1998), while another

report showed that B. cepacia strain 5�5B inhibited

R. solani by producing a phenazine derivative (Cartwright

et al. 1995). Burkholderia cepacia PC II was reported to

inhibit growth of Phytophthora capsici in red pepper

probably through production of 4-quinolinone metabo-

lites (Moon et al. 1996). Burkholderia cepacia AF2001 was

shown to synthesize cepacidine A which was found to

have biocontrol activity against Pythium ultimum on cot-

ton and cucumbers (Lee et al. 2000). Burkholderia cepacia

B37w was shown to produce pyrrolnitrin which inhibited
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Figure 3 Testing antifungal endophyte candidates on field cores of creeping bentgrass, after inoculation with Sclerotinia homoeocarpa. (a–i) Trial

1 and (j–r) Trial 2. (a and j) no endophyte, no pathogen treatment (control); (b and k) no endophyte, pathogen-only treatment (control); (c and l)

pathogen with endophyte 3A12; (d and m) pathogen with endophyte 3C11. (e and n) pathogen with endophyte 5C9; (f and o) pathogen with

mixture of endophytes 3A12, 3C11 and 5C9; (g and p) pathogen with endophyte 4H12; (h and q) pathogen with endophyte 3A1 (negative control

endophyte); and (i and r) pathogen with fungicide treatment (Banner MAXX); (s and t) Graphs showing the mean percentage lesion after each

treatment (n = 4) as measured by ASSESS software from Trial 1 and Trial 2 respectively. The histograms represent the mean values, and the error bars

represent the standard error of the mean (SEM). Asterisks indicate significant difference at 0�05 compared to the respective pathogen-only control.
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Fusarium sambucinum, the causative agent of potato dry

rot (Burkhead et al. 1994).

Some of the above Burkholderia compounds may have

broad-spectrum anti-fungal activities: for example,

pyrrolnitrin from Burkholderia pyrrocinia was used as an

antifungal agent to treat opportunistic fungal infections

in humans (Vial et al. 2007). The wide spectrum, diverse

antimicrobial arsenal encoded by the Burkholderia gen-

ome may have made it an ideal endophyte for selection

and retention by Zea.

Future applications

Dollar spot is an important disease in creeping bentgrass

and there is no current and efficient control against it

except for the use of synthetic fungicides which are facing

increased regulation or use restrictions (Wisniewski and

Wilson 1992; Geiger et al. 2010). There is concern that

extensive use of fungicides is causing the development of

resistant strains of S. homoeocarpa and causing

environmental toxicity due to its slow degradation (Jo
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et al. 2008; Ok et al. 2010). Other culture-based control

strategies (e.g. nitrogen application, dew removal) are

cost or labour intensive (Ellram et al. 2007; Giordano

et al. 2012). Development of biological agents to control

this disease is thus of great importance. Field trials are

now needed to determine if the bacterial endophytes with

potential antifungal activity identified in this study can

partially control dollar spot disease under real world con-

ditions. Endophyte spray formulations will need to be

optimized to improve their efficacy. For example, prelim-

inary data using qPCR suggests that all three endophyte

strains (3A12, 3C11, 5C9) colonize creeping bentgrass

shoots while only endophyte 5C9 appears to colonize

roots effectively (data not shown); this methodology can

be used in the future to improve endophyte colonization

and persistence. Furthermore, our data showing that the

endophytes can target a wide spectrum of modern crop

pathogens in vitro suggest that these ancient endophytes

may be useful in the fight against diverse fungal diseases

of modern crops. Nevertheless, the practical application

of these endophytes to biological control may be limited,

depending on the results of future human safety testing –
but our results suggest the endophytes may hold benefits

to their native host plants.
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Additional Supporting Information may be found in the

online version of this article:

Figure S1 Validation of the disease assessments used in

this study, using positive and negative controls as follows:

(a–d) First trial. (e–h) Second trial. (i–l) Third trial.

Figure S2 Testing of antifungal endophyte candidates

(Trial 1) as foliar sprays on field cores of creeping bent-

grass, after 10 days of inoculation with S. homoeocarpa

fungal pathogen.

Figure S3 Testing pathogenicity of antifungal endo-

phyte candidates (Trial 1) on field cores of creeping bent-

grass, after 17 days of inoculation with foliar spray of

endophytes.

Figure S4 Testing of antifungal endophyte candidates

(Trial 2) as foliar sprays on field cores of creeping bent-

grass, after 10 days of inoculation with S. homoeocarpa

fungal pathogen.

Figure S5 Testing pathogenicity of antifungal endo-

phyte candidates (Trial 2) on field cores of creeping bent-

grass, after 17 days of inoculation with foliar spray of

endophytes.

Figure S6 Testing pathogenicity of antifungal endo-

phyte candidates on field cores of creeping bentgrass,

after 17 days of inoculation with foliar spray of endo-

phytes.

Table S1 List of Zea endophytes used in this study and

their corresponding zones of inhibition of S. homoeocarpa

growth.

Table S2 Percentage of lesions in turfgrass field cores

from greenhouse trials as measured by ASSESS software.

Appendix S1 Confirming the endophytic ability of

strain 3A12 (Materials and methods).
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