Evaluation of cold tolerance of tall fescue cultivars after dehardening events 2021 OTRF research report Sessoms et al.

In the Northern USA and Canada, the cooler temperatures of fall result in perennial grasses hardening, allowing them to survive the freezing temperature of winter. Unfortunately, climate changes are also associated with wider fluctuations in temperatures during the winterspring interseason. Data from the past 15 years shows that air temperatures increase, and fluctuate, enough in the spring to influence grass growth. These fluctuations will result in dehardening of grasses (increased temperatures leading to crown hydration) followed by winterkill when the temperatures drop below freezing again. Therefore, our research project is to characterize the freezing tolerance of newly developed tall fescue cultivars after potential events of dehardening.

We have requested seeds of newly developed tall fescue cultivars used in the most recent National Turfgrass Evaluation Program (NTEP). For our growth chamber experiment, we were able to secure 79 tall fescue cultivars. Our first experiment was to evaluate the freezing tolerance (lethal temperature that kills 50% of the population; LT_{50}) for all these cultivars after a period of cold hardening. We observed that -12 °C would be an appropriate temperature for freeze stress after dehardening events based on these initial freezing tolerance experiments. Our results also indicated a large variation of freezing tolerance for the tall fescue cultivars; this variation was also present within seed companies (Table 1).

Cultivar	Sponsor	LT ₅₀ (°C)
Exp 8PC	Barenbrug	-9.9 A
TD2	Pennington	-9.9 A
PPG-TF 267	Peak Plant Genetics LLC	-10 AB
TMT1	DLF Pickseed USA	-10 A-C
Barnoble	Barenbrug Research	-10.2 A-D
RS1	DLF Pickseed USA	-10.2 A-D
Bonfire	Jacklin Seed by Simplot/Barenbrug	-10.2 A-D
PPG-TF 249	Peak Plant Genetic	-10.2 A-D
PPG-TF 257	Peak Plant Genetics LLC	-10.2 A-D
PST-5MINK	Pure Seed Testing	-10.2 A-D
SETF445	Smith Seed Services	-10.2 A-D
SE53D2	Smith Seed Services, LLC	-10.2 A-D
PPG-TF 313	Columbia Seeds/The Scotts Company	-10.3 A-D
5LSS	Pure Seed Testing	-10.3 A-D
PST-5DZM	Pure Seed Testing	-10.3 A-D
PPG-TF 318	Peak Plant Genetics LLC	-10.3 А-Е
DLFPS-321/3695	DLF Pickseed USA	-10.4 A-F
zion	Barenbrug USA	-10.6 A-G
GRANDE 3	DLF Pickseed USA	-10.6 A-G
DLFPS-321/3696	DLF Pickseed USA	-10.6 A-G
Birmingham	Grassland Oregon Seed	-10.6 A-G

Table 1: Average freezing tolerance (LT50) for all tested cultivars. Each seed company is color-coded.

Avenger III	Mountain View Seeds	-10.6 A-G
Tough	Barenbrug	-10.7 A-G
Xanadu	Barenbrug Research	-10.7 A-G
DLFPS-321/3679	DLF Pickseed USA	-10.7 A-G
PST-5TRN	Pure Seed Testing	-10.7 A-G
BAR-FA-8230	Barenbrug Research	-10.8 A-H
PPG-TF 338	Columbia Seeds/The Scotts Company	-10.9 A-I
DLFPS-321/3699	DLF Pickseed USA	-10.9 A-I
PST-5GLBS	Pure Seed Testing	-10.9 A-I
SETF456	Smith Seed Services	-10.9 A-I
BAR-EA-8228	Barenbrug Research	-11 A-I
PPG-TF 323	Columbia Seeds/The Scotts Company	-11 A-I
DLFPS-321/3708	DLF Pickseed USA	-11 A-I
DLFPS-321/3706	DLF Pickseed USA	-11 A-I
DLFPS-321/3707	DLF Pickseed USA	-11 A-I
Dynamite G-LS	Mountain View Seeds	-11 A-I
Titanium G-LS	Mountain View Seeds	-11 A-I
PPG-TF 306	Peak Plant Genetics LLC	-11 A-I
PPG-TF 316	Peak Plant Genetics LLC	-11 A-I
RH3	ProSeeds Marketing Inc.	-11 A-I
PST-5DC24	Pure Seed (Rose Agri)	-11 A-I
Monument (PST-5SQB)	Pure Seed Testing	-11 A-I
ZRC1	Z Seeds	-11 A-I
AST8218LM	Allied Seed LLC	-11.1 A-I
DLFPS-TF/3553	DLF Pickseed USA	-11.1 A-J
AST5120/A-TF31	Allied Seed LLC	-11.3 B-J
GO-RH20	Grassland Oregon Seed	-11.3 B-J
DLFPS-321/3693	DLF Pickseed USA	-11.3 C-J
PPG-TF 305	Peak Plant Genetics LLC	-11.3 C-J
Lifeguard (PST-5NOR)	Pure Seed (Rose Agri)	-11.3 C-J
PST-5E6	Pure Seed Testing	-11.3 C-J
PST-5GQ	Pure Seed Testing	-11.3 C-J
PST-5MCMO	Pure Seed Testing	-11.3 C-J
KY-31	Standard	-11.3 C-J
Kizzle K18-ROE	The Scotts Company	-11.3 C-J
DLFPS-321/3705	DLF Pickseed USA	-11.4 D-J
DLFPS-TF/3552	DLF Pickseed USA	-11.4 D-J
DLFPS-321/3702	DLF Pickseed USA	-11.4 D-J
DLFPS-321/3703	DLF Pickseed USA	-11.4 D-J
DLFPS-TF/3550	DLF Pickseed USA	-11.4 D-J
Firecracker G-LS	Mountain View Seeds	-11.4 D-J
PPG-TF 231	Peak Plant Genetics LLC	-11.4 D-J
PPG-TF 320	Peak Plant Genetics LLC	-11.4 D-J
PPG-TF 244	Peak Plant Genetics LLC	-11.4 D-J
GLX ACED (PST-		
5DART)	Pure Seed (Rose Agri)	-11.4 D-J

SESCRI	Smith Seed Services, LLC	-11.4 D-J
SETF104	Smith Seed Services, LLC	-11.4 D-J
NP3	Pennington	-11.6 E-J
RH1	ProSeeds Marketing Inc.	-11.6 E-J
AST8118LM	Allied Seed LLC	-11.6 F-J
Stealth	Mountain View Seeds	-11.6 F-J
PPG-TF 262	Peak Plant Genetics LLC	-11.6 F-J
K18-RS6	The Scotts Company	-11.6 F-J
DLFPS-321/3694	DLF Pickseed USA	-11.7 G-J
GO-AOMK	Grassland Oregon Seed	-12.1 H-J
K18-WB1	The Scotts Company	-12.1 IJ
Raptor LS	Mountain View Seeds	-12.4 J

We have started two runs of the dehardening experiment in controlled conditions. All tall fescue cultivars used in the initial LT_{50} experiment will be grown and cold hardened using a simulated fall/winter environment, then plants will be exposed to dehardening conditions (12°C) for either 1 or 5 days. Following dehardening, plants will be frozen at -12°C to see if they maintained freezing tolerance through the dehardening treatment. We are planning two additional runs for statistical analysis. Data observations will consist of photochemical efficiency (Fv/Fm; a measure of plant stress), turf quality, and digital image taken after 0, 2, 4, 8, 16 and 21 days of recovery to examine winter damage.

In September 2021, we seeded our dehardening experiment in field conditions using a seeding rate of 2 PLS (pure live seeds) / cm^2 . Plots were irrigated as needed, fertilized with 4.9 g N / m^2 and mowed a three times to 8.9 cm. In Feb-March 2022, 3 replicates will be subjected to a 1 day of dehardening conditions, while another 3 will be subjected to 5 days of dehardening, and the remaining 3 replicates will not be artificially dehardened. Plots will be dehardened by covering the respective plots with polyethylene plastic sheeting, and continually blowing in hot air with several heaters. Temperature will be monitored to make sure that thawing is occurring. In addition, the snow cover and air temperature will be monitored for all plots during the whole winter and spring. Later, spring green up, Fv/Fm, TQ, and digital image will be taken on all plots.